Linear models for breeding values prediction in haplotype-assisted selection - an analysis of QTL-MAS Workshop 2011 Data
نویسندگان
چکیده
BACKGROUND The aim of this study was to estimate haplotype effects and then to predict breeding values using linear models. The haplotype based analysis enables avoidance of loosing information due to linkage disequilibrium between single markers. There are also less explanatory variables in the linear model which makes the estimation more reliable. METHODS Different methods and criteria for marker and haplotype selection were considered. First, markers with MAF lower than 5% where excluded from the data set. Then, SNPs in complete linkage disequilibrium where selected. Next step was to construct haplotypes and to estimate their frequencies basing on selected SNPs. The haplotypes with a frequency lower than 1% were not considered in further analysis. Chosen haplotypes were used as the explanatory variables in the linear models for breeding values prediction. Linear models with fixed and random haplotype effects as well as animal model were tested. RESULTS The number of markers was limited to 1206, 1189, 1249, 1288 and 1167 for chromosome 1, 2, 3, 4 and 5, respectively due to MAF criterion. In total 409 subsets of SNPs with r2=1 were found. 1476 haplotypes with different lengths were inferred. The frequencies of 817 haplotypes were higher than 1% - 184 for the first chromosome, 172 for the second, 131 for the third, 146 for the forth and 184 haplotypes for the fifth chromosome. The haplotype effects estimated using random models were comparable and more precise in prediction for individuals with unknown phenotypes. A few haplotypes with large effects were found when their effects were defined as fixed in the linear model . The correlations of the predicted breeding values with true breeding values were not that high. This could be brought about by selection criteria imposed on the genotype data which led to substantial reduction of number of markers. CONCLUSIONS Although not many markers were considered in the study, the results obtained show that the implemented approach can be considered as quite promising. The haplotype approach let to avoid high dimensional models as compared with single SNPs models.
منابع مشابه
Estimating genomic breeding values from the QTL-MAS Workshop Data using a single SNP and haplotype/IBD approach
Genomic breeding values were estimated using a Gibbs sampler that avoided the use of the Metropolis-Hastings step as implemented in the BayesB model of Meuwissen et al., Genetics 2001, 157:1819-1829.Two models that estimated genomic estimated breeding values (EBVs) were applied: one used constructed haplotypes (based on alleles of 20 markers) and IBD matrices, another used single SNP regression...
متن کاملGenotype imputation for the prediction of genomic breeding values in non-genotyped and low-density genotyped individuals
BACKGROUND There is wide interest in calculating genomic breeding values (GEBVs) in livestock using dense, genome-wide SNP data. The general framework for genomic selection assumes all individuals are genotyped at high-density, which may not be true in practice. Methods to add additional genotypes for individuals not genotyped at high density have the potential to increase GEBV accuracy with li...
متن کاملSensitivity of genomic selection to using different prior distributions
UNLABELLED Genomic selection describes a selection strategy based on genomic estimated breeding values (GEBV) predicted from dense genetic markers such as single nucleotide polymorphism (SNP) data. Different Bayesian models have been suggested to derive the prediction equation, with the main difference centred around the specification of the prior distributions. METHODS The simulated dataset ...
متن کاملGenomic selection for QTL-MAS data using a trait-specific relationship matrix
BACKGROUND The genomic estimated breeding values (GEBV) of the young individuals in the XIV QTL-MAS workshop dataset were predicted by three methods: best linear unbiased prediction with a trait-specific marker-derived relationship matrix (TABLUP), ridge regression best linear unbiased prediction (RRBLUP), and BayesB. METHODS The TABLUP method is identical to the conventional BLUP except that...
متن کاملPre-selection of markers for genomic selection
BACKGROUND Accurate prediction of genomic breeding values (GEBVs) requires numerous markers. However, predictive accuracy can be enhanced by excluding markers with no effects or with inconsistent effects among crosses that can adversely affect the prediction of GEBVs. METHODS We present three different approaches for pre-selecting markers prior to predicting GEBVs using four different BLUP me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2012